Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41.575
Filtrar
1.
J Cancer Res Clin Oncol ; 150(4): 178, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580878

RESUMO

PURPOSE: The prognostic utility of MIB-1 labeling index (LI) in pediatric low-grade glioma (PLGG) has not yet conclusively been described. We assess the correlation of MIB-1 LI and tumor growth velocity (TGV), aiming to contribute to the understanding of clinical implications and the predictive value of MIB-1 LI as an indicator of proliferative activity and progression-free survival (PFS) in PLGG. METHODS: MIB-1 LI of a cohort of 172 nonependymal PLGGs were comprehensively characterized. Correlation to TGV, assessed by sequential MRI-based three-dimensional volumetry, and PFS was analyzed. RESULTS: Mean MIB-1 LI accounted for 2.7% (range: < 1-10) and showed a significant decrease to 1.5% at secondary surgery (p = .0013). A significant difference of MIB-1 LI in different histopathological types and a correlation to tumor volume at diagnosis could be shown. Linear regression analysis showed a correlation between MIB-1 LI and preoperative TGV (R2 = .55, p < .0001), while correlation to TGV remarkably decreased after incomplete resection (R2 = .08, p = .013). Log-rank test showed no association of MIB-1 LI and 5-year PFS after incomplete (MIB-1 LI > 1 vs ≤ 1%: 48 vs 46%, p = .73) and gross-total resection (MIB-1 LI > 1 vs ≤ 1%: 89 vs 95%, p = .75). CONCLUSION: These data confirm a correlation of MIB-1 LI and radiologically detectable TGV in PLGG for the first time. Compared with preoperative TGV, a crucially decreasing correlation of MIB-1 LI and TGV after surgery may result in limited prognostic capability of MIB-1 LI in PLGG.


Assuntos
Neoplasias Encefálicas , Glioma , Criança , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Antígeno Ki-67 , Prognóstico , Estudos Retrospectivos
2.
Nat Commun ; 15(1): 3226, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622132

RESUMO

The tumor microenvironment plays a crucial role in determining response to treatment. This involves a series of interconnected changes in the cellular landscape, spatial organization, and extracellular matrix composition. However, assessing these alterations simultaneously is challenging from a spatial perspective, due to the limitations of current high-dimensional imaging techniques and the extent of intratumoral heterogeneity over large lesion areas. In this study, we introduce a spatial proteomic workflow termed Hyperplexed Immunofluorescence Imaging (HIFI) that overcomes these limitations. HIFI allows for the simultaneous analysis of > 45 markers in fragile tissue sections at high magnification, using a cost-effective high-throughput workflow. We integrate HIFI with machine learning feature detection, graph-based network analysis, and cluster-based neighborhood analysis to analyze the microenvironment response to radiation therapy in a preclinical model of glioblastoma, and compare this response to a mouse model of breast-to-brain metastasis. Here we show that glioblastomas undergo extensive spatial reorganization of immune cell populations and structural architecture in response to treatment, while brain metastases show no comparable reorganization. Our integrated spatial analyses reveal highly divergent responses to radiation therapy between brain tumor models, despite equivalent radiotherapy benefit.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Proteômica , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Glioblastoma/patologia , Encéfalo/patologia , Imunofluorescência , Microambiente Tumoral
3.
Sci Rep ; 14(1): 8738, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627421

RESUMO

Brain tumor glioblastoma is a disease that is caused for a child who has abnormal cells in the brain, which is found using MRI "Magnetic Resonance Imaging" brain image using a powerful magnetic field, radio waves, and a computer to produce detailed images of the body's internal structures it is a standard diagnostic tool for a wide range of medical conditions, from detecting brain and spinal cord injuries to identifying tumors and also in evaluating joint problems. This is treatable, and by enabling the factor for happening, the factor for dissolving the dead tissues. If the brain tumor glioblastoma is untreated, the child will go to death; to avoid this, the child has to treat the brain problem using the scan of MRI images. Using the neural network, brain-related difficulties have to be resolved. It is identified to make the diagnosis of glioblastoma. This research deals with the techniques of max rationalizing and min rationalizing images, and the method of boosted division time attribute extraction has been involved in diagnosing glioblastoma. The process of maximum and min rationalization is used to recognize the Brain tumor glioblastoma in the brain images for treatment efficiency. The image segment is created for image recognition. The method of boosted division time attribute extraction is used in image recognition with the help of MRI for image extraction. The proposed boosted division time attribute extraction method helps to recognize the fetal images and find Brain tumor glioblastoma with feasible accuracy using image rationalization against the brain tumor glioblastoma diagnosis. In addition, 45% of adults are affected by the tumor, 40% of children and 5% are in death situations. To reduce this ratio, in this study, the Brain tumor glioblastoma is identified and segmented to recognize the fetal images and find the Brain tumor glioblastoma diagnosis. Then the tumor grades were analyzed using the efficient method for the imaging MRI with the diagnosis result of partially high. The accuracy of the proposed TAE-PIS system is 98.12% which is higher when compared to other methods like Genetic algorithm, Convolution neural network, fuzzy-based minimum and maximum neural network and kernel-based support vector machine respectively. Experimental results show that the proposed method archives rate of 98.12% accuracy with low response time and compared with the Genetic algorithm (GA), Convolutional Neural Network (CNN), fuzzy-based minimum and maximum neural network (Fuzzy min-max NN), and kernel-based support vector machine. Specifically, the proposed method achieves a substantial improvement of 80.82%, 82.13%, 85.61%, and 87.03% compared to GA, CNN, Fuzzy min-max NN, and kernel-based support vector machine, respectively.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Criança , Humanos , Glioblastoma/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Encefálicas/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Algoritmos
4.
Acta Neuropathol Commun ; 12(1): 57, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605367

RESUMO

Li-Fraumeni syndrome (LFS) is an autosomal dominant tumor predisposition syndrome caused by heterozygous germline mutations or deletions in the TP53 tumor suppressor gene. Central nervous system tumors, such as choroid plexus tumors, medulloblastomas, and diffuse gliomas, are frequently found in patients with LFS. Although molecular profiles of diffuse gliomas that develop in pediatric patients with LFS have been elucidated, those in adults are limited. Recently, diffuse gliomas have been divided into pediatric- and adult-type gliomas, based on their distinct molecular profiles. In the present study, we investigated the molecular profiles of high-grade gliomas in three adults with LFS. These tumors revealed characteristic histopathological findings of high-grade glioma or glioblastoma and harbored wild-type IDH1/2 according to whole exome sequencing (WES). However, these tumors did not exhibit the key molecular alterations of glioblastoma, IDH-wildtype such as TERT promoter mutation, EGFR amplification, or chromosome 7 gain and 10 loss. Although WES revealed no other characteristic gene mutations or copy number alterations in high-grade gliomas, such as those in histone H3 genes, PDGFRA amplification was found in all three cases together with uniparental disomy of chromosome 17p, where the TP53 gene is located. DNA methylation analyses revealed that all tumors exhibited DNA methylation profiles similar to those of pediatric-type high-grade glioma H3-wildtype and IDH-wildtype (pHGG H3-/IDH-wt), RTK1 subtype. These data suggest that high-grade gliomas developed in adult patients with LFS may be involved in pHGG H3-/IDH-wt. PDGFRA and homozygous alterations in TP53 may play pivotal roles in the development of this type of glioma in adult patients with LFS.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Glioblastoma , Glioma , Síndrome de Li-Fraumeni , Adulto , Humanos , Criança , Glioblastoma/genética , Glioblastoma/patologia , Síndrome de Li-Fraumeni/genética , Genes p53 , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/patologia , Mutação/genética , Neoplasias Cerebelares/genética , Isocitrato Desidrogenase/genética
5.
Biomed Res Int ; 2024: 5582424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606198

RESUMO

Glioblastoma multiforme (GBM) is the most prevalent type of brain tumour; although advancements in treatment have been made, the median survival time for GBM patients has persisted at 15 months. This study is aimed at investigating the genetic alterations and clinical features of GBM patients to find predictors of survival. GBM patients' methylation and gene expression data along with clinical information from TCGA were retrieved. The most overrepresented pathways were identified independently for each omics dataset. From the genes found in at least 30% of these pathways, one gene that was identified in both sets was further examined using the Kaplan-Meier method for survival analysis. Additionally, three groups of patients who started radio and chemotherapy at different times were identified, and the influence of these variations in treatment modality on patient survival was evaluated. Four pathways that seemed to negatively impact survival and two with the opposite effect were identified. The methylation status of PRKCB was highlighted as a potential novel biomarker for patient survival. The study also found that treatment with chemotherapy prior to radiotherapy can have a significant impact on patient survival, which could lead to improvements in clinical management and therapeutic approaches for GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Análise de Sobrevida , Neoplasias Encefálicas/patologia , Mutação , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico
6.
PLoS One ; 19(4): e0296958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558074

RESUMO

In pre-clinical models of brain gliomas, Relaxation Along a Fictitious Field in second rotating frame (TRAFF2), continues wave T1rho (T1ρcw), adiabatic T1rho (T1ρadiab), and adiabatic T2rho (T2ρadiab) relaxation time mappings have demonstrated potential to non-invasively characterize brain gliomas. Our aim was to evaluate the feasibility and potential of 4 different spin lock methods at 3T to characterize primary brain glioma. 22 patients (26-72 years) with suspected primary glioma. T1ρcw was performed using pulse peak amplitude of 500Hz and pulse train durations of 40 and 80 ms while the corresponding values for T1ρadiab, T2ρadiab, TRAFF2 were 500/500/500Hz and 48 and 96, 64 and 112, 45 and 90 ms, respectively. The parametric maps were calculated using a monoexponential model. Molecular profiles were evaluated from tissue specimens obtained during the resection. The lesion regions-of-interest were segmented from high intensity FLAIR using automatic segmentation with manual refinement. Statistical descriptors from the voxel intensity values inside each lesion and radiomic features (Pyrad MRC package) were calculated. From extracted radiomics, mRMRe R package version 2.1.0 was used to select 3 features in each modality for statistical comparisons. Of the 22 patients, 10 were found to have IDH-mutant gliomas and of those 5 patients had 1p/19q codeletion group comparisons. Following correction for effects of age and gender, at least one statistical descriptor was able to differentiate between IDH and 1p/19q codeletion status for all the parametric maps. In the radiomic analysis, corner-edge detector features with Harris-Stephens filtered signal showed significant group differences in IDH and 1p/19q codeletion groups. Spin lock imaging at 3T of human glioma was feasible and various qualitative parameters derived from the parametric maps were found to have potential to differentiate IDH and 1p19q codeletion status. Future larger prospective clinical trials are warranted to evaluate these methods further.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Estudos de Viabilidade , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Mutação , Glioma/diagnóstico por imagem , Glioma/patologia , Aberrações Cromossômicas , Isocitrato Desidrogenase/genética , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 19
7.
Oncol Res ; 32(4): 659-678, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560572

RESUMO

Background: IQGAP3 plays a crucial role in regulating cell proliferation, division, and cytoskeletal organization. Abnormal expression of IQGAP3 has been linked to various tumors, but its function in glioma is not well understood. Methods: Various methods, including genetic differential analysis, single-cell analysis, ROC curve analysis, Cox regression, Kaplan-Meier analysis, and enrichment analysis, were employed to analyze the expression patterns, diagnostic potential, prognostic implications, and biological processes involving IQGAP3 in normal and tumor tissues. The impact of IQGAP3 on immune infiltration and the immune microenvironment in gliomas was evaluated using immunofluorescence. Additionally, the cBioPortal database was used to analyze copy number variations and mutation sites of IQGAP3. Experimental validation was also performed to assess the effects of IQGAP3 on glioma cells and explore underlying mechanisms. Results: High IQGAP3 expression in gliomas is associated with an unfavorable prognosis, particularly in wild-type IDH and 1p/19q non-codeleted gliomas. Enrichment analysis revealed that IQGAP3 is involved in regulating the cell cycle, PI3K/AKT signaling, p53 signaling, and PLK1-related pathways. Furthermore, IQGAP3 expression may be closely related to the immunosuppressive microenvironment of glioblastoma. BRD-K88742110 and LY-303511 are potential drugs for targeting IQGAP3 in anti-glioma therapy. In vitro experiments showed that downregulation of IQGAP3 inhibits the proliferation and migration of glioma cells, with the PLK1/PI3K/AKT pathway potentially playing a crucial role in IQGAP3-mediated glioma progression. Conclusion: IQGAP3 shows promise as a valuable biomarker for diagnosis, prognosis, and immunotherapeutic strategies in gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Prognóstico , Neoplasias Encefálicas/patologia , Variações do Número de Cópias de DNA , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Glioma/patologia , Microambiente Tumoral/genética , Proteínas Ativadoras de GTPase
8.
J Pak Med Assoc ; 74(3): 595-596, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38591309

RESUMO

Assessing treatment response is extremely important in management of brain tumours. Response assessment in neuro-oncology (RANO) was introduced in 2008 for the purpose of making recommendations for it by addressing and countering the limitations in previously reported response criteriae. Subsequently, multiple RANO working groups have been formed to cater to different tumour types and to update their previous recommendations to counter the limitations in their criteria. Herein we have a summarized list of RANO criteria for adult brain tumours.


Assuntos
Neoplasias Encefálicas , Adulto , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Medicina Interna , Imageamento por Ressonância Magnética
9.
J Nanobiotechnology ; 22(1): 159, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589859

RESUMO

Brain metastasis (BM) is one of the leading causes of cancer-related deaths in patients with advanced non-small cell lung cancer (NSCLC). However, limited treatments are available due to the presence of the blood-brain barrier (BBB). Upregulation of lysophosphatidylcholine acyltransferase 1 (LPCAT1) in NSCLC has been found to promote BM. Conversely, downregulating LPCAT1 significantly suppresses the proliferation and metastasis of lung cancer cells. In this study, we firstly confirmed significant upregulation of LPCAT1 in BM sites compared to primary lung cancer by analyzing scRNA dataset. We then designed a delivery system based on a single-chain variable fragment (scFv) targeting the epidermal growth factor receptor (EGFR) and exosomes derived from HEK293T cells to enhance cell-targeting capabilities and increase permeability. Next, we loaded LPCAT1 siRNA (siLPCAT1) into these engineered exosomes (exoscFv). This novel scFv-mounted exosome successfully crossed the BBB in an animal model and delivered siLPCAT1 to the BM site. Silencing LPCAT1 efficiently arrested tumor growth and inhibited malignant progression of BM in vivo without detectable toxicity. Overall, we provided a potential platform based on exosomes for RNA interference (RNAi) therapy in lung cancer BM.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , Animais , Humanos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , RNA Interferente Pequeno/farmacologia , Exossomos/metabolismo , Células HEK293 , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo
10.
Acta Neuropathol Commun ; 12(1): 50, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566120

RESUMO

Tumor-associated microglia and blood-derived macrophages (TAMs) play a central role in modulating the immune suppressive microenvironment in glioma. Here, we show that GPNMB is predominantly expressed by TAMs in human glioblastoma multiforme and the murine RCAS-PDGFb high grade glioma model. Loss of GPNMB in the in vivo tumor microenvironment results in significantly smaller tumor volumes and generates a pro-inflammatory innate and adaptive immune cell microenvironment. The impact of host-derived GPNMB on tumor growth was confirmed in two distinct murine glioma cell lines in organotypic brain slices from GPNMB-KO and control mice. Using published data bases of human glioma, the elevated levels in TAMs could be confirmed and the GPNMB expression correlated with a poorer survival.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/patologia , Glioma/patologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Microambiente Tumoral
11.
J Exp Clin Cancer Res ; 43(1): 103, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570866

RESUMO

BACKGROUND: Brain metastasis (BM) is common among cases of advanced non-small cell lung cancer (NSCLC) and is the leading cause of death for these patients. Mesothelin (MSLN), a tumor-associated antigen expressed in many solid tumors, has been reported to be involved in the progression of multiple tumors. However, its potential involvement in BM of NSCLC and the underlying mechanism remain unknown. METHODS: The expression of MSLN was validated in clinical tissue and serum samples using immunohistochemistry and enzyme-linked immunosorbent assay. The ability of NSCLC cells to penetrate the blood-brain barrier (BBB) was examined using an in vitro Transwell model and an ex vivo multi-organ microfluidic bionic chip. Immunofluorescence staining and western blotting were used to detect the disruption of tight junctions. In vivo BBB leakiness assay was performed to assess the barrier integrity. MET expression and activation was detected by western blotting. The therapeutic efficacy of drugs targeting MSLN (anetumab) and MET (crizotinib/capmatinib) on BM was evaluated in animal studies. RESULTS: MSLN expression was significantly elevated in both serum and tumor tissue samples from NSCLC patients with BM and correlated with a poor clinical prognosis. MSLN significantly enhanced the brain metastatic abilities of NSCLC cells, especially BBB extravasation. Mechanistically, MSLN facilitated the expression and activation of MET through the c-Jun N-terminal kinase (JNK) signaling pathway, which allowed tumor cells to disrupt tight junctions and the integrity of the BBB and thereby penetrate the barrier. Drugs targeting MSLN (anetumab) and MET (crizotinib/capmatinib) effectively blocked the development of BM and prolonged the survival of mice. CONCLUSIONS: Our results demonstrate that MSLN plays a critical role in BM of NSCLC by modulating the JNK/MET signaling network and thus, provides a potential novel therapeutic target for preventing BM in NSCLC patients.


Assuntos
Benzamidas , Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Imidazóis , Neoplasias Pulmonares , Triazinas , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Mesotelina , Neoplasias Pulmonares/patologia , Proteínas Ligadas por GPI/metabolismo , Crizotinibe , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia
12.
Sci Rep ; 14(1): 8265, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594281

RESUMO

Boron neutron capture therapy (BNCT) is a type of targeted particle radiation therapy with potential applications at the cellular level. Spinal cord gliomas (SCGs) present a substantial challenge owing to their poor prognosis and the lack of effective postoperative treatments. This study evaluated the efficacy of BNCT in a rat SCGs model employing the Basso, Beattie, and Bresnahan (BBB) scale to assess postoperative locomotor activity. We confirmed the presence of adequate in vitro boron concentrations in F98 rat glioma and 9L rat gliosarcoma cells exposed to boronophenylalanine (BPA) and in vivo tumor boron concentration 2.5 h after intravenous BPA administration. In vivo neutron irradiation significantly enhanced survival in the BNCT group when compared with that in the untreated group, with a minimal BBB scale reduction in all sham-operated groups. These findings highlight the potential of BNCT as a promising treatment option for SCGs.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Glioma , Neoplasias da Medula Espinal , Ratos , Animais , Neoplasias Encefálicas/patologia , Ratos Endogâmicos F344 , Boro , Pesquisa Translacional Biomédica , Compostos de Boro/farmacologia , Glioma/patologia
13.
Top Magn Reson Imaging ; 33(2): e0311, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38598426

RESUMO

ABSTRACT: In this case report, we describe a 76-year-old woman, presenting with dizziness for the past 2 months, without other focal neurological signs. A magnetic resonance imaging of the brain was ordered by her GP. The MRI demonstrated multiple ring-enhancing lesions, both supratentorial and infratentorial. Lumbar puncture showed normal findings, in particular a normal cell count and culture. Because of the radiologic appearance, initially thought to be suggestive of cerebral abscesses, antibiotics were started. However, further workup revealed a new diagnosis of a stage IV (metastatic) small cell lung carcinoma, making diffuse brain metastases more likely. The patient was transferred to oncology/pneumology, where she was started on whole-brain radiotherapy, after which systemic therapy would start. However, because of further clinical deterioration, she was admitted at the palliative ward, where she died only 3 months after the initial presentation. In this case report, we emphasize the importance of keeping a broad differential diagnosis and briefly review the various possible pathologies causing ring-enhancing lesions.


Assuntos
Neoplasias Encefálicas , Toxoplasmose Cerebral , Feminino , Humanos , Idoso , Toxoplasmose Cerebral/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Diagnóstico Diferencial
15.
BMC Med Imaging ; 24(1): 85, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600452

RESUMO

BACKGROUND: 1p/19q co-deletion in low-grade gliomas (LGG, World Health Organization grade II and III) is of great significance in clinical decision making. We aim to use radiomics analysis to predict 1p/19q co-deletion in LGG based on amide proton transfer weighted (APTw), diffusion weighted imaging (DWI), and conventional MRI. METHODS: This retrospective study included 90 patients histopathologically diagnosed with LGG. We performed a radiomics analysis by extracting 8454 MRI-based features form APTw, DWI and conventional MR images and applied a least absolute shrinkage and selection operator (LASSO) algorithm to select radiomics signature. A radiomics score (Rad-score) was generated using a linear combination of the values of the selected features weighted for each of the patients. Three neuroradiologists, including one experienced neuroradiologist and two resident physicians, independently evaluated the MR features of LGG and provided predictions on whether the tumor had 1p/19q co-deletion or 1p/19q intact status. A clinical model was then constructed based on the significant variables identified in this analysis. A combined model incorporating both the Rad-score and clinical factors was also constructed. The predictive performance was validated by receiver operating characteristic curve analysis, DeLong analysis and decision curve analysis. P < 0.05 was statistically significant. RESULTS: The radiomics model and the combined model both exhibited excellent performance on both the training and test sets, achieving areas under the curve (AUCs) of 0.948 and 0.966, as well as 0.909 and 0.896, respectively. These results surpassed the performance of the clinical model, which achieved AUCs of 0.760 and 0.766 on the training and test sets, respectively. After performing Delong analysis, the clinical model did not significantly differ in predictive performance from three neuroradiologists. In the training set, both the radiomic and combined models performed better than all neuroradiologists. In the test set, the models exhibited higher AUCs than the neuroradiologists, with the radiomics model significantly outperforming resident physicians B and C, but not differing significantly from experienced neuroradiologist. CONCLUSIONS: Our results suggest that our algorithm can noninvasively predict the 1p/19q co-deletion status of LGG. The predictive performance of radiomics model was comparable to that of experienced neuroradiologist, significantly outperforming the diagnostic accuracy of resident physicians, thereby offering the potential to facilitate non-invasive 1p/19q co-deletion prediction of LGG.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Prótons , Estudos Retrospectivos , 60570 , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Algoritmos , Imageamento por Ressonância Magnética/métodos
16.
Int J Oncol ; 64(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577941

RESUMO

Glioma is the most common type of primary intracranial malignant tumor, and because of its high invasiveness and recurrence, its prognosis remains poor. The present study investigated the biological function of piggyBac transportable element derived 5 (PGBD5) in glioma. Glioma and para-cancerous tissues were obtained from five patients. Reverse transcription-quantitative PCR and western blotting were used to detect the expression levels of PGBD5. Transwell assay and flow cytometry were used to evaluate cell migration, invasion, apoptosis and cell cycle distribution. In addition, a nude mouse tumor transplantation model was established to study the downstream pathways of PGBD5 and the molecular mechanism was analyzed using transcriptome sequencing. The mRNA and protein expression levels of PGBD5 were increased in glioma tissues and cells. Notably, knockdown of PGBD5 in vitro could inhibit the migration and invasion of glioma cells. In addition, the knockdown of PGBD5 expression promoted apoptosis and caused cell cycle arrest in the G2/M phase, thus inhibiting cell proliferation. Furthermore, in vivo experiments revealed that knockdown of PGBD5 expression could inhibit Ki67 expression and slow tumor growth. Changes in PGBD5 expression were also shown to be closely related to the peroxisome proliferator-activated receptor (PPAR) signaling pathway. In conclusion, interference with PGBD5 could inhibit the malignant progression of glioma through the PPAR pathway, suggesting that PGBD5 may be a potential molecular target of glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Camundongos , Humanos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Regulação para Cima , Linhagem Celular Tumoral , Glioma/patologia , Fatores de Transcrição/genética , Neoplasias Encefálicas/patologia , Proliferação de Células/genética , Apoptose/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Transposases/genética , Transposases/metabolismo
17.
J Immunother Cancer ; 12(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599661

RESUMO

BACKGROUND: Glioblastoma (GBM), a highly immunosuppressive and often fatal primary brain tumor, lacks effective treatment options. GBMs contain a subpopulation of GBM stem-like cells (GSCs) that play a central role in tumor initiation, progression, and treatment resistance. Oncolytic viruses, especially oncolytic herpes simplex virus (oHSV), replicate selectively in cancer cells and trigger antitumor immunity-a phenomenon termed the "in situ vaccine" effect. Although talimogene laherparepvec (T-VEC), an oHSV armed with granulocyte macrophage-colony stimulating factor (GM-CSF), is Food and Drug Administration (FDA)-approved for melanoma, its use in patients with GBM has not been reported. Interleukin 2 (IL-2) is another established immunotherapy that stimulates T cell growth and orchestrates antitumor responses. IL-2 is FDA-approved for melanoma and renal cell carcinoma but has not been widely evaluated in GBM, and IL-2 treatment is limited by its short half-life, minimal tumor accumulation, and significant systemic toxicity. We hypothesize that local intratumoral expression of IL-2 by an oHSV would avoid the systemic IL-2-related therapeutic drawbacks while simultaneously producing beneficial antitumor immunity. METHODS: We developed G47Δ-mIL2 (an oHSV expressing IL-2) using the flip-flop HSV BAC system to deliver IL-2 locally within the tumor microenvironment (TME). We then tested its efficacy in orthotopic mouse GBM models (005 GSC, CT-2A, and GL261) and evaluated immune profiles in the treated tumors and spleens by flow cytometry and immunohistochemistry. RESULTS: G47Δ-mIL2 significantly prolonged median survival without any observable systemic IL-2-related toxicity in the 005 and CT-2A models but not in the GL261 model due to the non-permissive nature of GL261 cells to HSV infection. The therapeutic activity of G47Δ-mIL2 in the 005 GBM model was associated with increased intratumoral infiltration of CD8+ T cells, critically dependent on the release of IL-2 within the TME, and CD4+ T cells as their depletion completely abrogated therapeutic efficacy. The use of anti-PD-1 immune checkpoint blockade did not improve the therapeutic outcome of G47Δ-mIL2. CONCLUSIONS: Our findings illustrate that G47Δ-mIL2 is efficacious, stimulates antitumor immunity against orthotopic GBM, and may also target GSC. OHSV expressing IL-2 may represent an agent that merits further exploration in patients with GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Herpes Simples , Melanoma , Terapia Viral Oncolítica , Estados Unidos , Animais , Camundongos , Humanos , Glioblastoma/patologia , Melanoma/terapia , Herpesvirus Humano 2 , Linfócitos T CD8-Positivos , Interleucina-2/uso terapêutico , Neoplasias Encefálicas/patologia , Microambiente Tumoral
18.
J Neuropathol Exp Neurol ; 83(5): 338-344, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38605523

RESUMO

EGFR amplification in gliomas is commonly defined by an EGFR/CEP7 ratio of ≥2. In testing performed at a major reference laboratory, a small subset of patients had ≥5 copies of both EGFR and CEP7 yet were not amplified by the EGFR/CEP7 ratio and were designated high polysomy cases. To determine whether these tumors are more closely related to traditionally defined EGFR-amplified or nonamplified gliomas, a retrospective search identified 22 out of 1143 (1.9%) gliomas with an average of ≥5 copies/cell of EGFR and CEP7 with an EGFR/CEP7 ratio of <2 displaying high polysomy. Of these cases, 4 had insufficient clinicopathologic data to include in additional analysis, 15 were glioblastomas, 2 were IDH-mutant astrocytomas, and 1 was a high-grade glial neoplasm, NOS. Next-generation sequencing available on 3 cases demonstrated one with a TERT promoter mutation, TP53 mutations in all cases, and no EGFR mutations or amplifications, which most closely matched the nonamplified cases. The median overall survival times were 42.86, 66.07, and 41.14 weeks for amplified, highly polysomic, and nonamplified, respectively, and were not significantly different (p = 0.3410). High chromosome 7 polysomic gliomas are rare but our data suggest that they may be biologically similar to nonamplified gliomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Estudos Retrospectivos , Neoplasias Encefálicas/patologia , Hibridização in Situ Fluorescente , Receptores ErbB/genética , Glioma/genética , Mutação/genética , Aberrações Cromossômicas , Isocitrato Desidrogenase/genética
19.
Acta Neuropathol Commun ; 12(1): 60, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637838

RESUMO

Methylation class "CNS tumor with BCOR/BCOR(L1)-fusion" was recently defined based on methylation profiling and tSNE analysis of a series of 21 neuroepithelial tumors with predominant presence of a BCOR fusion and/or characteristic CNV breakpoints at chromosome 22q12.31 and chromosome Xp11.4. Clear diagnostic criteria are still missing for this tumor type, specially that BCOR/BCOR(L1)-fusion is not a consistent finding in these tumors despite being frequent and that none of the Heidelberger classifier versions is able to clearly identify these cases, in particular tumors with alternative fusions other than those involving BCOR, BCORL1, EP300 and CREBBP. In this study, we introduce a BCOR::CREBBP fusion in an adult patient with a right temporomediobasal tumor, for the first time in association with methylation class "CNS tumor with BCOR/BCOR(L1)-fusion" in addition to 35 cases of CNS neuroepithelial tumors with molecular and histopathological characteristics compatible with "CNS tumor with BCOR/BCOR(L1)-fusion" based on a comprehensive literature review and data mining in the repository of 23 published studies on neuroepithelial brain Tumors including 7207 samples of 6761 patients. Based on our index case and the 35 cases found in the literature, we suggest the archetypical histological and molecular features of "CNS tumor with BCOR/BCOR(L1)-fusion". We also present four adult diffuse glioma cases including GBM, IDH-Wildtype and Astrocytoma, IDH-Mutant with CREBBP fusions and describe the necessity of complementary molecular analysis in "CNS tumor with BCOR/BCOR(L1)-alterations for securing a final diagnosis.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Neoplasias Neuroepiteliomatosas , Adulto , Humanos , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/genética , Neoplasias Neuroepiteliomatosas/diagnóstico por imagem , Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/genética , Metilação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/genética , Proteína de Ligação a CREB/genética
20.
Neurosurg Rev ; 47(1): 172, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639882

RESUMO

Stereotactic radiosurgery (SRS) is an option for brain metastases (BM) not eligible for surgical resection, however, predictors of SRS outcomes are poorly known. The aim of this study is to investigate predictors of SRS outcome in patients with BM secondary to non-small cell lung cancer (NSCLC). The secondary objective is to analyze the value of volumetric criteria in identifying BM progression. This retrospective cohort study included patients >18 years of age with a single untreated BM secondary to NSCLC. Demographic, clinical, and radiological data were assessed. The primary outcome was treatment failure, defined as a BM volumetric increase 12 months after SRS. The unidimensional measurement of the BM at follow-up was also assessed. One hundred thirty-five patients were included, with a median BM volume at baseline of 1.1 cm3 (IQR 0.4-2.3). Fifty-two (38.5%) patients had SRS failure at follow-up. Only right BM laterality was associated with SRS failure (p=0.039). Using the volumetric definition of SRS failure, the unidimensional criteria demonstrated a sensibility of 60.78% (46.11%-74.16%), specificity of 89.02% (80.18%-94.86%), positive LR of 5.54 (2.88-10.66) and negative LR of 0.44 (0.31-0.63). SRS demonstrated a 61.5% local control rate 12 months after treatment. Among the potential predictors of treatment outcome analyzed, only the right BM laterality had a significant association with SRS failure. The volumetric criteria were able to identify more subtle signs of BM increase than the unidimensional criteria, which may allow earlier diagnosis of disease progression and use of appropriate therapies.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Humanos , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/secundário , Estudos de Coortes , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Estudos Retrospectivos , Radiocirurgia/métodos , Resultado do Tratamento , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...